TEE 3-VIZYLIRDOLE PAREKT COMPOUKD AND ITS AEIOR: RED REACTIVITY ASPECTS

U1f Pindur*, Myung-Hwa Kin, and Manfred Eitel

Institut filir Pharmazie im Fachbereich Chemie und Pharmazie der Universităt, Saarstrasse 21, D-6500 Mainz, Federal Republic of Germany

SUMARY: Synthesis and reactivity of the parent 3 -vinylindole and its anion are described. These compounds react as dienes in $\mathrm{HOMO}_{\text {diene }}$-controlled Diels-Alder reactions. In the presence of dichloromethane, the 3 -vinylindole anion undergoes an S_{N} reaction to furnish a dimeric product.

Both structural analysis and evaluation of the reactivity of the parent compounds in the vinylheteroarene series are of general interest for predicting the outcome of Diels-Alder reactions and other pericyclic processes, especially with regard to synthesis planning ${ }^{1-3}$. In the vinylindole series, we have reported the first synthesis of the parent 2-vinylindole (1) by way of an intramolecular Wittig process ${ }^{4}$. Compound 1 possesses sufficient thermal stability [mp $92{ }^{\circ} \mathrm{C}, \Delta \mathrm{H}_{\mathrm{f}} \mathrm{s}-\mathrm{cis}(\mathrm{MNDO})=71.1 \mathrm{kcal} \mathrm{mol}^{-1}$] andits Diels-Alder reactivity as a $4 \pi-$ reaction component [$E_{H O M O}(M N D O)=-8.25 \mathrm{eV}$] has been investigated thorough1y by us ${ }^{4}$. Although the parent 3 -vinylindole (2) was described for the first time in Ref. ${ }^{5}$, our reinvestigation of the experimental and physical data reported have
 shown that these are not sufficient from structural and reactivity points of view. According to MNDO calculations, compound 2 ($\Delta_{\Delta} H_{f}$ s-cis $=72.9 \mathrm{kcal}^{\circ} \mathrm{mol}^{-1}$) is expected to possess a similar thermodynamic stability and reactivity to those of 1 .

We have now repeated the multi-step reaction sequence leading to $\mathbb{N}, \underline{N}$-diethyltryptamine \mathbb{N}^{-} oxide (3) which, according to Ref. ${ }^{5}$, can be converted to 2 via a Cope elimination. We obtained 3 as a syrupy product and its structure was confirmed as the picrate (mp $192{ }^{\circ} \mathrm{C}$). The subsequent Cope elimination of 3 took place at about $85^{\circ} \mathrm{C}$ in absolute DMSO. TLC analysis showed the presence of a single product but, in spite of various work-up conditions and in
 contrast to Ref. ${ }^{5}$, we could not obtain compound 2 in crystaline form. The viscous olly product 2 is thermally labile and susceptible to polymerization. Hence, the constitution of 2 was confirmed indirectly via its DielsAlder reaction with N -phenylmaleimide to yield 4 (mp $332{ }^{\circ} \mathrm{C}$). According to MNDO calculations, compound 4 resulting from a dehydrogenative Diels-Alder reaction should represent the product of a HOMO $_{\text {diene }}$-LUMO $_{\text {dienophile }}{ }^{\text {-control- }}$
led cycloaddition ${ }^{3}$ (E HOMO of $2=-8.16$
eV). In addition, according to MMX force field calculations ${ }^{6}$ the coplanar s-cis and s-trans conformations of 2 represent the energetically minimum conformers and they exhibit only slight differences in their thermodynamic stabilities ($\left.\Delta \Delta \mathrm{H}_{\mathrm{f}}=1.0 \mathrm{kcal} \mathrm{mol}^{-1}\right)^{6}$. Thus, a sufficient population of the essential s-cis conformer of 2 can be assumed to be present in the reaction mixture for the construction of the [$4+2$] transition state.

Since the direct physical characterization of 2 in this way was unsuccessful, we attempted to realize an alternative concept for the synthesis of 2. The 3 -vinglindole 5 (80%, mp $67^{\circ} \mathrm{C}$) can be prepared readily by a Wittig reaction from N -phenylsulfonylindole-3-carbaldehyde ${ }^{7}$. The protecting group of 5 can be cleaved under extremely mild conditions with KOH/ 18-

	(100) $\mathrm{CH}_{2} \mathrm{Cl}_{2} \downarrow{ }^{2000} \cdot \mathrm{~S}_{\mathrm{min}}$ 8 (204)	crown-6 to furnish the 3 -vinylindole anion 6. However, neutralization attempts led to polymerization so that again an indirect structural characterization via [4 + 2] cycloaddition with, in this case, 1,4-naphthoquinone added directly to the reaction mixture in which 6 had been generated was necessary. The cycloadduct 7 (mp $230{ }^{\circ} \mathrm{C}$) was thus 1 so lated and also represents the result of a dehydrom genating Diels-Alder reaction ${ }^{5}$. When the alkaline solution of the anion 6 was treated with an excess of dichloromethane, an S_{N} reaction occurred with the solvent to produce the bis(3-vinylindol-1-yl)methane 8, a physically extremely stable compound (mp $108{ }^{\circ} \mathrm{C}$). The reaction products 7 and 8 without doubt represent further unequivocal structural evidence for the constitutions of 2 and 6 . The constitutions of products 4,7 , and 8 were confirmed by ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectroscopy, EI mass spectroscopy, and elemental analyses ${ }^{8}$.

REFFEREMGES ARD HOTES

1. J. Sauer, R. Sustmann, Angew. Chem. 92, 733 (1980); Angew. Chem. Int. Ed. Engl. 19, 779 (1980)
2. I. Fleming, Frontier Orbitals and Organic Chemical Reactions, John Wiley \& Sons, New York, 1976.
3. U. Pindur, L. Pfeuffer, Monatsh. Chem. 120, 27 (1989).
4. U. Pindur, M. Eitel, Helv. Chim Acta 71, 1060 (1988).
5. W. E. Noland, R. J. Sundberg, J. Org. Chem. 28, 884 (1963) and references cited therein.
6. MMX force field program (M2/MMPI Pi) from Serena Software, Bloomington, Indiana, U.S.A.
7. U. Pindur, L. Pfeuffer, Monatsh. Chem, 120, 157 (1989).
 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{C} 8-\mathrm{H}$ or $\mathrm{C} 7-\mathrm{H}$) , $7.50-7.57$ ($\mathrm{m}, 5 \mathrm{H}$, phenyl), 7.66 ($\mathrm{d}, \mathrm{J}=8.1,1 \mathrm{H}, \mathrm{C} 9-\mathrm{H}$), 7.71 ($\mathrm{d}, \mathrm{J}=7.8,1 \mathrm{H}$, $\mathrm{C4}-\mathrm{H}$), 8.31 ($\mathrm{d}, \mathrm{J}=7.9,1 \mathrm{H}, \mathrm{C} 6-\mathrm{H}$), 8.63 ($\mathrm{d}, \underline{\mathrm{J}}=7.9,1 \mathrm{H}, \mathrm{C} 5-\mathrm{H}$), 12.25 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$). 7 ($\mathrm{DMSO}-\mathrm{d}_{6}$): 7.26 (dd, $2 \times{ }^{3}{ }_{\mathrm{J}}=7.7,1 \mathrm{H}, \mathrm{C}-\mathrm{H}$ or $\mathrm{ClO-H}$), 7.52 ($\mathrm{dd},{ }^{3}{ }_{\mathrm{J}}=7.9$ and $8.2,1 \mathrm{H}, \mathrm{ClO-HI}$ or $\left.\mathrm{C} 9-\mathrm{H}\right), 7.80$ (d, $\left.3_{\underline{J}}=8.2,1 \mathrm{H}, \overline{\mathrm{Cl} 1-\mathrm{H}}\right), 7.89\left(\mathrm{mC},{ }^{3} \underline{\mathrm{~J}}=6.9\right.$ and $7.4,2 \mathrm{H}, \overline{\mathrm{C}}-\mathrm{H}$ and $\left.\mathrm{C} 3-\mathrm{H}\right), 7.98\left(\mathrm{~d},{ }^{3} \underline{\mathrm{~J}}=8.0,1 \mathrm{H}, \mathrm{C} 6-\mathrm{H}\right.$ or $\overline{\mathrm{C}} 7-\mathrm{H}), 8.17\left(\mathrm{dd},{ }^{3} \underline{\mathrm{~J}}=7.3,{ }^{4} \underline{\mathrm{~J}}=0.8,1 \mathrm{H}_{\text {arom }}\right.$), $8.23\left(\mathrm{mc}, 2 \mathrm{H}_{\text {arom }}\right), 8.58\left(\mathrm{~d},{ }^{3} \underline{\mathrm{~J}}=8.0,1 \mathrm{H}, \mathrm{c} 7-\mathrm{H}\right.$ or C6H), $12.21(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .8\left(\mathrm{CDCl}_{3}\right): 5.25\left(\mathrm{dd},{ }^{2} \mathrm{~J}=1.3,{ }^{3}{ }_{\mathrm{J}}^{\mathrm{ccis}}=11.4,2 \mathrm{H}, \mathrm{C}^{2}-\mathrm{H}_{\text {trans }}\right), 5.76\left(\mathrm{dd},{ }^{2} \mathrm{~J}=\right.$
 Cl - H) , 7.31 ($\mathrm{mc}, 6 \mathrm{H}, \mathrm{C} 2-\mathrm{H}, \mathrm{C} 5-\mathrm{H}, \mathrm{C} 6-\mathrm{H}$), 7.48 (dd, ${ }^{3} \mathrm{~J}=8.1,{ }^{4} \mathrm{~J}=0.7,2 \mathrm{H}, \mathrm{C} 7-\mathrm{H}$), 7.94 (dd, ${ }^{3} \mathrm{~J}=$ $\left.7.9,{ }^{4} \mathrm{~J}=0.9,2 \mathrm{H}, \mathrm{C} 4-\mathrm{H}\right)$.
